百科创建
12.1K
1096

罗伯特·约翰·奥曼(以色列耶路撒冷希伯来大学合理性研究中心教授)

罗伯特·约翰·奥曼(Robert John Aumann) (1930年6月8日—),美国和以色列(双重国籍)经济学家,以色列耶路撒冷希伯来大学合理性研究中心教授,犹太人。

个人概述

罗伯特·约翰·奥曼(Robert John Aumann) (1930年6月8日—),美国和以色列(双重国籍)经济学家,因为“通过博弈论分析改进了我们对冲突和合作的理解”与托马斯·克罗姆比·谢林(Thomas Crombie Schelling)共同获得2005年诺贝尔经济学奖。他是美国科学院院士,美国艺术与科学学院外籍院士,以色列科学与社科院院士,英国社科院通讯院士,国际计量经济学会会士。曾担任以色列数学学会主席,国际博弈论学会首任主席。

个人简历

1930年生于德国(美因河边的)法兰克福。

1938年因逃避纳粹迫害,随全家迁到美国纽约。

1950年获得纽约城市学院数学学士。

1955年获得麻省理工学院纯数学博士学位(Knot Theory)。

1956年至今,耶路撒冷希伯来大学,教授。

主要成就

博弈论

第一个定义了博弈论中的相关均衡概念 ,这是一种非协作型博弈中的均衡,比经典纳什均衡更加灵活。

交易者连续统市场经济模型。

交互环境中代理人之间通识的数学公式表示。

重复博弈的连续交互模型。

其他学术成就

罗伯特·约翰·奥曼作为一名杰出的经济学家,在决策制定理性观点方面有着杰出的贡献,对博弈论和其他许多经济理论的形成起到了重要的乃至不可或缺的作用。因此,他于1983年获得了以色列技术机构颁发的科学技术哈维奖,1994年获得了以色列颁发的经济学奖。本文就他在博弈论方面的贡献以及相关思想作一评析。

一、弈论:交互式条件下“最优理性决策”

一般认为,博弈理论加1944年。数学家约翰·冯·诺伊曼(John von Neumann)和经济学家奥斯卡·摩根斯坦(Oskar Morgenstern)合作出版了《博弈论与经济行为》一书,概括了经济主体的典型行为特征,提出了策略型与广义型(扩展型)等基本的博弈模型、解的概念和分析方法,奠定了经济博弈论大厦的基石,也标志着经济博弈论的创立。

那么,什么是博弈论?奥曼认为,较具描述性的名称应是“交互的决策论”。可以看到,奥曼对博弈论的定义是十分简洁凝练的。因为博弈论是研究决策者的行为发生直接相互作用时的决策以及这种决策的均衡问题的,就是说人们之间的决策与行为将形成互为影响的关系,一个经济主体在决策时必须考虑到对方的反应,所以用“交互的决策”来描述博弈论是再简洁不过的了。奥曼还以经济主体的理性为分析的出发点,认为博弈论是交互式条件下“最优理性决策”,即每个参与者都希望能以其偏好获得最大的满足。如果仅有一个参与者,通常就会产生划分明确的最优化问题。而在多人参与者的博弈论中,一个参与者对结果的偏好等级并不意味着是他的可能决策的等级,这个结果也取决于其他参与者的决策。

奥曼还分析了一般和特殊模型中的“解概念”,指出,就社会科学的理性方面而言,博弈论是一种概括或“统一场论”。这里的“社会”是广义的,包括人类和非人类的参与者(如计算机、动物、植物等)。与探讨像经济学或政治学等学科的他种方法不同,博弈论不利用个别的、特定的结构讨论各种具体问题,如完全竞争、垄断、寡头垄断、国际贸易、征税、表决、威慑等等。更确切地说,博弈论发展了原则上应用于所有交互情形的一套方法,并进而探讨这些方法在每一具体应用中所导致的结果。从一般博弈论方法得到的结果与用较为特殊的方法得到的结果之间,常常出现密切的联系。然而在其他的情形下,博弈论方法会得出一些其他方法未能得出的新见解。

二、完全竞争经济:参与者连续统模型

众所周知,完全竞争经济模型描述了一种存在着许多参与者(居民和厂商),并且每个参与者的影响都是微不足道的市场情形。就是说,在完全竞争的经济状态下,每个居民或厂商的交易量相对于市场总量来说是很小的,任何一个人交易的商品数量并不会影响总供给和总需求。然而,奥曼认为:“事实上,只要仅存在有限多的参与者,个别参与者对经济的影响就不能被忽视。因此,适合于完全竞争的直观上的概念的数学模型必须包括无限多的参与者。我们认为适合这个目的的最自然的模型包括了参与者连续统(Continuum),类似于一条线上点的连续统或流体中粒子的连续统。”

在经济理论中,“连续统”观点的引入对经济学的学科发展有很大的影响。奥曼指出,连续统可以被看作接近于存在许多但是数量有限的粒子(或经济主体,或策略,或可能的价格)的真实情形。采用连续统的粗略估计的目的是使称为“分析”的数学分支的强有力的、精确的方法得以应用,而使用有限的方法将会更困难甚至是无望的。古典经济学假定每个人接受既定的所有商品的价格(单个居民或厂商的决策不能影响价格)。为了使经济处于稳定的状态,价格必须使总需求等于总供给,这就是瓦尔拉斯的竞争均衡(Walrasian competitive equilibrium)。奥曼证明了它的存在,并用商人连续统的市场作了明确的说明。

奥曼还考虑了称为联盟的团体和它们之间以互益的方式进行的交易。竞争均衡定义假定厂商允许市场力量决定价格,他们根据市场价格进行交易;而对埃奇沃思著名的“契约曲线”(contract curve)进行概括的博弈论概念的核心,则认为这个核心由在此之上没有联盟可以有所进步的所有分配组成,它忽视了价格机制,仅仅涉及参与者之间的直接交易。奥曼指出,竞争分配的核心和模式与厂商连续统的市场相一致。奥曼通过精确表达完全竞争观点的连续统模型,成功地使最初由埃奇沃思提出,经许多其他模型改进的理论精确化,并从此成为经济理论的基本准则之一。

此外,1975年,奥曼还获得了另一个完全竞争经济中竞争分配和值分配之间等价性的结果。在奥曼看来,博弈论和经济理论中最显著而独有的现象或许是竞争市场经济的价格均衡与对应的博弈的主要解概念(除一个以外)之间的关系。直观上看,等价性原理是说,市场价格的建立是从在完全竞争市场上运转的基本力量自然地产生的,几乎不管我们假定这些力量是怎样运转的。

综上所述可以看到,完全竞争分析所获得的基本观点,使对完全竞争之外的基本经济问题的研究成为可能并且更加容易。在这方面,奥曼最重要的贡献和影响是利用一个或更大的参与者的连续统建立的垄断和寡头垄断竞争模型,以及公共经济学基于经济活动和政治过程相互交织的税收模型,如表决、固定价格模型等。

三、重复博弈论:理论系统性的发展

重复博弈是指同样结构的博弈重复多次,其中的每次博弈称为“阶段博弈”。重复博弈是动态博弈中的重要内容,它可以是完全信息的重复博弈,也可以是不完全信息的重复博弈。奥曼对重复博弈的贡献在于对理论系统性的发展起了一定的促进作用。

首先是对完全信息的重复博弈研究的促进。完全信息博弈的最早结果出现在50年代,被称为“佚名定理”。该定理认为,重复博弈的策略均衡结局与一次性博弈中的可行的个体理性结局恰好相一致。这个结局可被视为把多阶段非合作行为与一次性博弈的合作行为联系在一起。然而,虽然所有可行的个体理性结局确实代表了合作博弈的解观点,但是它相当模糊,并且不提供信息。而奥曼认为,完全信息的重复博弈论与人们之间相互作用的基本形式的演化相关。它的目的是解释诸如合作、利他主义、报复、威胁(自我破坏或其他)等现象。博弈论和新古典经济学模式的现象,可能一开始看起来是非理性的。

奥曼还考察了许多具体的合作行为,定义了“强均衡”概念,即没有任何参与者团体可以通过单方面改变它们的决策来获益的情形。他指出,重复博弈的“强均衡”与一次性博弈的核(更精确的是“6核心”)相一致。为此,奥曼定义和研究了经济理论中极为重要的“一般”合作博弈,即非转移效用(non-transferable utility)博弈,这开拓了该领域的研究空间,因为在此之前,仅有“单边支付”博弈被研究,即每个联盟可以任意在其成员中分享一定数额的赢得。

其次是对不完全信息的重复博弈研究的促进。从20世纪60年代中期开始,奥曼和其他合作者一起,在其学生的辅助下,发展了不完全信息的重复博弈论。 1966年,奥曼和M.马希勒(Michael Maschler)在给美国武器控制和裁军机构的开创性报告中,建立了不完全信息的重复博弈模型。他们指出,信息使用的复杂性实际上可以以一种出色的、简练的、明确的方式来解决。在最简单的一个重复的2人零(zero-sum)和博弈中,其中一个参与者比另一个拥有更多的信息(这就是所谓的单边的不完全信息),拥有更多信息的参与者所使用(并揭露)的信息数量是被精确地决定的;有时是完全揭露或根本没有揭露;有时是部分揭露。这种分析被扩展至更一般的模型,即2人零和博弈与非零和博弈。许多新的精深的观点和概念由此产生。例如,奥曼、马希勒和斯特恩斯在1968年引入了一个“联合控制的彩票” (jointly controlled lottery)的概念,即没有参与者可以单方面地改变彩票不同结果的可能性,这个概念与非零和博弈密切相关。之后,奥曼在重复博弈上的研究获得了丰硕成果。事实上,他的有关不完全信息博弈的许多重要观点已被应用于许多经济学科,诸如寡头垄断、委托人与代理人、保险等等。

四、合作与非合作博弈论:非转移效用与理性的假设

博弈论还可以划分为合作博弈与非合作博弈。在20世纪50年代,既是合作博弈发展的鼎盛期,又是非合作博弈的开创期。奥曼在该方面的贡献在于,一方面把“可转移效用”理论扩展为一般的非转移效用理论;另一方面发展并提炼了“什么是理性”,使之形成统一的观点。

合作博弈理论不讨论理性的个人如何达成合作的过程,而是直接讨论合作的结果与利益的分配。合作博弈的基本形式是联盟型博弈,它隐含的假设是存在一个在参与者之间可以自由转移的交换媒介(“货币”),每个参与者的效用在其中是线性的。这些博弈被称为“单边支付”博弈,或“可转移效用”博弈(TU- games)。奥曼把“可转移效用”理论扩展到一般的非转移效用理论,发展并加强了可转移效用和非转移效用的合作博弈论。他先是界定了非转移效用联盟形式的博弈概念,然后提出了相应的合作解的概念。他研究了不同模型中的合作解,同时,将非转移效用值公理化,这是奥曼对合作博弈论基本原理所作的贡献之一。在 1985年,奥曼还成功地制定了描述非转移效用值的一个简单公理集,这不仅拓展了这一领域的研究,而且产生了许多新的研究方向。

非合作博弈论的重点是对个体的战略选择,即每个参与者如何博弈,或者说选择什么策略达到他的目标。与之不同,合作博弈理论的重点则是对群体,并仅从更一般的意义上阐述了每个联盟的赢得,而没有说明如何赢得。奥曼通过多年的努力,发展并提炼了“什么是理性”。他认为:“如果一个参与者在既定的信息下最大化其效用,他就是理性的。”因此,一个理性人选择他最偏好的行动,当然“最”是相对于他所掌握的(关于环境和其他参与者的)知识而言的。令人惊讶的是,这个看上去简单清晰的表述可以以不同的方式理解,当然,也有些是互相矛盾的。什么是“参与者的信息”?他知道其他人的什么情况?是他们的理性吗?奥曼在他的许多影响深远的研究工作中解决了这些问题,并为这些模型制订了标准。

首先,他考察了知识和信息问题。对于这个问题,奥曼相当精确地概括出具有常识性的概念。他指出,如果开始时两个参与者具有了相同信念,但在对于一个具体事件的较晚的信念(基于不同的个人信息)是常识的,则这些较晚的信念必然形成一致。奥曼的观点对非博弈论产生了重大的影响。一方面,它导致了涉及多人情形下知识的正式概念的“交互认识论”整个领域的发展。另一方面,它形成了许多应用范畴。从经济模型——诸如只要人们有相同的最高执行官,他们的行为是人所共知的,那么具有不同信息的人们之间就不会产生交易——到计算机科学——用于分析分布环境,诸如多重处理器网络等。

其次,他假定参与者是“贝叶斯理性的”(Bayesian rational)。这在一人决策论中或许是标准的,但是它在多人模型中是否也适用?奥曼引入了相关均衡的基本理论概念。相关均衡出现在经济和其他许多领域,引起了对不同交流程序和通常所说的“机制”的更重要的研究。 同时,奥曼还研究了“达到古典纳什均衡所需要的理性和理性知识的范围”的基本问题。他的观点与专业人士相反,认为答案并不一定是“理性的常识”。严格的理性是对决策者行为复杂的假设,由此产生了对边界理性模型的考察,该模型放宽了假定。奥曼指出,在交互情形下,微小的非理性是如何起很大作用的。实际上,在某些情形下,它能够导致重复博弈的合作。

五、其他贡献

奥曼在值集函数(即值为点集而非单独一点的函数)领域,也作出了许多重要的贡献,如“奥曼可衡量选择定理”、值集函数积分结果等。大部分问题产生于对不同博弈论和经济模型的研究,经济人连续统和数学理论是这些模型演化和分析的重要工具。奥曼所获得的诸如一般均衡、最优分配、非线性编制程序、控制理论、测量理论、定点理论等结果是基本的,它们被应用于经济学、数学、运筹学等许多领域。此外,奥曼把库恩(Kuhn)著名的完全检索有限博弈中的行为和混合战略的均衡结果扩展为无限的情形,克服了复杂的技术困难。除了他发表的书外,奥曼多年来对许多人的研究产生了直接的影响。他向他们建议并提出了重要的问题和研究的渠道,与他们分享了深层的理解,帮助并鼓励他们从事研究工作。奥曼总是引导他的学生走向这一领域,与学生之间形成了双向反馈的相互作用,所获得的结果又被他用于塑造和提炼他的观点和理解。

宗教

使用博弈论分析犹太法典中的塔木德难题,解决了长期悬而未决的遗产分割问题。

著作

Values of Non-Atomic Games, Princeton University Press,Princeton, 1974 (with L. S. Shapley).

Game Theory (in Hebrew), Everyman's University, Tel Aviv, 1981 (with Y. Tauman and S. Zamir), Vol 1,Vol 2.

Lectures on Game Theory, Underground Classics in Economics, Westview Press, Boulder, 1989.

Handbook of Game Theory with economic applications, Vol 1-3, Elsevier, Amsterdam (coedited with S. Hart).

Repeated Games with Incomplete Information, MIT Press, Cambridge, 1995 (with M. Maschler).

Collected Papers, Vol 1-2, MIT Press, Cambridge, 2000.

1096

免责声明:本站词条系由网友创建、编辑和维护,内容仅供参考。

以上内容均为商业内容展示,仅供参考,不具备专业问题解决服务,

如果您需要解决具体问题(尤其在法律、医学等领域),建议您咨询相关领域的专业人士。

如您发现词条内容涉嫌侵权,请通过 948026894@qq.com 与我们联系进行删除处理!

一秒推